1.connecting rod
The connecting rod transfers the force received by the piston to the crankshaft and converts the reciprocating motion of the piston into a rotary motion of the crankshaft together with the crankshaft. It receives two alternating tensile and compressive stresses in each cycle, and the frequency of the force is very high. Because the connecting rod bears a large load and works under rotating fatigue loads, the connecting rod not only has higher requirements for strength, but also puts forward high requirements for quality tolerances.
Connecting rodis complex. When it is forged, the I-shaped rod part is prone to fold, especially the connecting rod with an I-shaped bottom width ratio greater than 5 is more prone to fold. The solution is mainly to control the volume and The ratio of the cross-sectional area of the pre-finished and final forged I-shaped parts, and extruded. In addition, the connecting rod is easily deformed when trimming. It can be solved by using size compensation when designing the final forging die cavity, but this requires forging temperature and The production cycle is constant, and the quality of the cutting edge must be guaranteed. It is best to use the cutting edge and correct the compound mold. In recent years, new technology of expanding and breaking the connecting rod has appeared.
2.Steering Knuckle
Steering knuckle is a key component for guiding on the chassis of a car. It supports the mass of the car and is manipulated by the steering mechanism to achieve steering of the car. It is the most complex forging in a typical car forging, and its complexity coefficient is mostly less than 0.16. . The shape of the steering knuckle is complex and there are many types. According to the shape and structure of the steering knuckle, it can be roughly divided into three categories and nine types, that is, the knuckle with a rod (also referred to as a finger shaft), the knuckle without a rod, and a few other types of knuckles. The forging process can be divided into two types: horizontal horizontal forging and vertical forging. For the horizontal horizontal forging process, the quality of flattening and upsetting splitting directly affects the forging and material utilization. For the vertical forging extrusion process is mainly reflected in the design of the extrusion billet and the design of the extrusion die cavity, how to reasonably allocate the volume of the knuckle parts is the key to the failure of forging, and also the difficult point of forging the complex knuckle.